Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Avian Dis ; 67(1): 102-107, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37140118

RESUMO

The U.S. Department of Agriculture Avian Disease and Oncology Laboratory currently relies on live birds of specific genetic backgrounds for producing chicken-embryo fibroblasts that are used for the diagnosis and subtyping of field isolates associated with avian leukosis virus (ALV) outbreaks. As an alternative to maintaining live animals for this purpose, we are currently developing cell lines capable of achieving the same result by ablation of the entry receptors utilized by ALV strains. We used CRISPR-Cas9 on the cell fibroblast-derived cell line DF-1 to disrupt the tva gene, which encodes the receptor required for binding and entry of ALV-A into cells. We ultimately identified seven DF-1 clones that had biallelic and homozygous indels at the Cas9 target site, exon 2 of tva. When tested in vitro for their ability to host ALV-A, the five clones that had frameshift mutations that disrupted the Tva protein were unable to support ALV-A replication. This result clearly demonstrates that modified cell lines can be used as part of a battery of tests to determine ALV subtype for isolate characterization, thus eliminating the need for live birds.


Nota de investigación- La ablación dirigida del exón 2 del gene del receptor del virus de la leucosis aviar A (ALV-A) en una línea celular de fibroblastos de pollo mediante CRISPR anula la infección por ALV-A. El Laboratorio de Oncología y Enfermedades Aviares del Departamento de Agricultura de los Estados Unidos. actualmente depende de aves vivas con antecedentes genéticos específicos para producir fibroblastos de embrión de pollo que se utilizan para el diagnóstico y la subtipificación de aislamientos de campo asociados con brotes del virus de la leucosis aviar (ALV). Como alternativa al mantenimiento de animales vivos para este propósito, actualmente se están desarrollando líneas celulares capaces de lograr el mismo resultado mediante la ablación de los receptores de entrada utilizados por las cepas ALV. Se utilizó el método repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas o CRISPR-Cas9 en la línea celular DF-1 derivada de fibroblastos para interrumpir el gene Tva, que codifica el receptor requerido para la unión y entrada de ALV-A en las células. Finalmente, se identificaron siete clones de DF-1 que tenían inserciones y deleciones (indeles) bialélicos y homocigóticos en el sitio blanco Cas9, exón 2 del gene tva. Cuando se probó in vitro su capacidad para albergar ALV-A, los cinco clones que tenían mutaciones que involucraban al marco de lectura y que interrumpieron la proteína Tva no pudieron admitir la replicación de ALVA. Este resultado demuestra claramente que las líneas celulares modificadas se pueden utilizar como parte de una batería de pruebas para determinar el subtipo de ALV para la caracterización de los aislamientos, eliminando así la necesidad de aves vivas.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Leucose Aviária/genética , Linhagem Celular , Éxons , Fibroblastos
2.
Microorganisms ; 10(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056456

RESUMO

Marek's disease (MD) is a ubiquitous disease of domesticated chickens and its etiologic agent is the Gallid alphaherpesvirus 2 (GaHV-2), also known as Marek's disease virus (MDV). MD is currently controlled by vaccination using live attenuated strains of MDV (e.g., CVI988/Rispens), non-pathogenic serotypes of MDV (GaHV-3), or non-pathogenic strains of the related Melagrid alphaherpesvirus 1 (MeHV-1). One attractive strategy for the production of new vaccine strains is a recombinant MDV attenuated by the deletion of the major viral oncogene meq. However, meq-deleted variants of MDV cause atrophy of the bursa and thymus in maternal antibody-negative chickens, and the resulting immunosuppression makes them unsuitable. Herein we detail our attempt to mitigate the lymphoid atrophy caused by meq-deleted MDV by further attenuation of the virus through ablation of the viral thymidine kinase (tk) gene. We demonstrate that ablation of the viral tk from the meq-deleted virus rMd5B40/Δmeq resulted in a virus attenuated for replication in vitro and which spared chickens from atrophy of the lymphoid organs in vivo. When the rMd5B40/Δmeq/Δtk/GFP was used as a vaccine it was protective against challenge with the vv+MDV strain 686, but the protection was less than that provided by the CVI988/Rispens vaccine.

3.
PLoS Biol ; 18(3): e3000619, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32134914

RESUMO

Many livestock and human vaccines are leaky because they block symptoms but do not prevent infection or onward transmission. This leakiness is concerning because it increases vaccination coverage required to prevent disease spread and can promote evolution of increased pathogen virulence. Despite leakiness, vaccination may reduce pathogen load, affecting disease transmission dynamics. However, the impacts on post-transmission disease development and infectiousness in contact individuals are unknown. Here, we use transmission experiments involving Marek disease virus (MDV) in chickens to show that vaccination with a leaky vaccine substantially reduces viral load in both vaccinated individuals and unvaccinated contact individuals they infect. Consequently, contact birds are less likely to develop disease symptoms or die, show less severe symptoms, and shed less infectious virus themselves, when infected by vaccinated birds. These results highlight that even partial vaccination with a leaky vaccine can have unforeseen positive consequences in controlling the spread and symptoms of disease.


Assuntos
Herpesvirus Galináceo 2/patogenicidade , Doença de Marek/transmissão , Vacinas Virais/farmacologia , Animais , Galinhas , Plumas/virologia , Interações Hospedeiro-Patógeno , Doença de Marek/etiologia , Doença de Marek/mortalidade , Doença de Marek/prevenção & controle , Vacinação , Carga Viral , Vacinas Virais/administração & dosagem , Virulência , Eliminação de Partículas Virais
4.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554689

RESUMO

In 2010, sporadic cases of avian leukosis virus (ALV)-like bursal lymphoma, also known as spontaneous lymphoid leukosis (LL)-like tumors, were identified in two commercial broiler breeder flocks in the absence of exogenous ALV infection. Two individual ALV subgroup E (ALV-E) field strains, designated AF227 and AF229, were isolated from two different breeder farms. The role of these ALV-E field isolates in development of and the potential joint impact in conjunction with a Marek's disease virus (MDV) vaccine (SB-1) were further characterized in chickens of an experimental line and commercial broiler breeders. The experimental line 0.TVB*S1, commonly known as the rapid feathering-susceptible (RFS) line, of chickens lacks all endogenous ALV and is fully susceptible to all subgroups of ALV, including ALV-E. Spontaneous LL-like tumors occurred following infection with AF227, AF229, and a reference ALV-E strain, RAV60, in RFS chickens. Vaccination with serotype 2 MDV, SB-1, in addition to AF227 or AF229 inoculation, significantly enhanced the spontaneous LL-like tumor incidence in the RFS chickens. The spontaneous LL-like tumor incidence jumped from 14% by AF227 alone to 42 to 43% by AF227 in combination with SB-1 in the RFS chickens under controlled conditions. RNA-sequencing analysis of the LL-like lymphomas and nonmalignant bursa tissues of the RFS line of birds identified hundreds of differentially expressed genes that are reportedly involved in key biological processes and pathways, including signaling and signal transduction pathways. The data from this study suggested that both ALV-E and MDV-2 play an important role in enhancement of the spontaneous LL-like tumors in susceptible chickens. The underlying mechanism may be complex and involved in many chicken genes and pathways, including signal transduction pathways and immune system processes, in addition to reported viral genes.IMPORTANCE Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation.


Assuntos
Vírus da Leucose Aviária/isolamento & purificação , Leucose Aviária/complicações , Leucose Aviária/virologia , Coinfecção/virologia , Linfoma/complicações , Linfoma/virologia , Doença de Marek/complicações , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Vírus da Leucose Aviária/genética , Galinhas/virologia , Suscetibilidade a Doenças , Regulação Viral da Expressão Gênica , Genótipo , Herpesvirus Galináceo 3 , Incidência , Doença de Marek/virologia , Vacinas contra Doença de Marek , Análise de Sequência de DNA , Transdução de Sinais , Transcriptoma , Vacinação , Vacinas Virais
5.
Avian Pathol ; 45(6): 657-666, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27258614

RESUMO

Marek's disease virus (MDV), an alphaherpesvirus, causes Marek's disease (MD), a lymphoproliferative disease in poultry characterized by T-cell lymphomas, nerve lesions, and mortality. Vaccination is used worldwide to control MD, but increasingly virulent field strains can overcome this protection, driving a need to create new vaccines. Previous studies revealed that insertion of reticuloendotheliosis virus (REV) long terminal repeat (LTR) into a bacterial artificial chromosome (BAC) clone of a very virulent strain of MDV, Md5, rendered the resultant recombinant virus, rMd5 REV-LTR BAC, fully attenuated in maternal antibody positive (Mab+) chickens at passage 40. In the current study, the protective efficacy of rMd5 REV-LTR BAC was evaluated. First, passage 70 was identified as being fully attenuated in maternal antibody negative chickens and chosen as the optimal passage level for use in protective efficacy studies. Second, three protective efficacy trials were conducted comparing the rMd5 REV-LTR p70 BAC to the CVI988/Rispens vaccine. Groups of Mab+ and Mab- 15I5 × 71 chickens were vaccinated in ovo at 18 days of embryonation or intra-abdominally at day of hatch, and challenged at 5 days post-hatch with the vv+MDV strain 686. Vaccination at day of hatch and in ovo with rMd5 REV-LTR p70 BAC protected chickens against MDV-induced bursa and thymic atrophy, but did not provide the same level of protection against MD tumours as that afforded by the commercial vaccine, CVI988/Rispens.


Assuntos
Galinhas/imunologia , Herpesvirus Galináceo 2/imunologia , Vacinas contra Doença de Marek/imunologia , Doença de Marek/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Vírus da Reticuloendoteliose/genética , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , Galinhas/virologia , Cromossomos Artificiais Bacterianos/genética , DNA Recombinante , Patos , Feminino , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Masculino , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Análise de Sequência de DNA/veterinária , Sequências Repetidas Terminais/genética , Vacinação/veterinária
6.
Avian Pathol ; 41(3): 259-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22702453

RESUMO

Co-cultivation of the JM/102W strain of Marek's disease virus (MDV) with reticuloendotheliosis virus (REV) resulted in the generation of a recombinant MDV containing the REV long terminal repeat (LTR) named the RM1 strain of MDV, a strain that was highly attenuated for oncogenicity but induced severe bursal and thymic atrophy. We hypothesize that the phenotypic changes were solely due to the LTR insertion. Furthermore, we hypothesize that insertion of REV LTR into an analogous location in a different MDV would result in a similar phenotypic change. To test these hypotheses, we inserted the REV LTR into a bacterial artificial chromosome (BAC) clone of a very virulent strain of MDV, Md5, and designated the virus rMd5-RM1-LTR. The rMd5-RM1-LTR virus and the rMd5 virus were passaged in duck embryo fibroblast cells for up to 40 passages before pathogenicity studies. Susceptible chickens were inoculated intra-abdominally at hatch with the viruses rMd5-RM1-LTR, rMd5 BAC parental virus, wild-type strain Md5, or strain RM1 of MDV. The rMd5-RM1-LTR virus was attenuated at cell culture passage 40, whereas the rMd5 BAC without RM1 LTR retained its pathogenicity at cell culture passage 40. Using polymerase chain analysis, the RM1 LTR insert was detected in MDV isolated from buffy coat cells collected from chickens inoculated with rMd5-RM1-LTR, but only at 1 week post inoculation. The data suggest that the presence of the RM1 LTR insert within MDV genome for 1 week post inoculation with virus at hatch is sufficient to cause a reduction in pathogenicity of strain Md5 of MDV.


Assuntos
Galinhas , Cromossomos Artificiais Bacterianos/genética , Mardivirus/genética , Mardivirus/patogenicidade , Doença de Marek/virologia , Vírus da Reticuloendoteliose Aviária/genética , Sequências Repetidas Terminais/genética , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , Feminino , Masculino , Mutagênese Insercional/métodos , Reação em Cadeia da Polimerase , Replicação Viral/genética
7.
Avian Pathol ; 39(5): 383-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20954015

RESUMO

Nine reticuloendotheliosis virus (REV) isolates obtained from broiler breeders, turkeys, and prairie chickens located in three different geographical regions in the USA, and three isolates obtained from known contaminated live-virus vaccines were characterized using polymerase chain reaction (PCR) and indirect immunofluorescence (IFA) assays. All isolates were propagated in chicken embryo fibroblasts obtained from a specific pathogen free breeder flock. PCR analysis of all 12 isolates resulted in the amplification of the 291-bp REV long-terminal repeat region (LTR); none of the isolates exhibited a different pattern or shift from the expected PCR product of REV LTR. The subtype of the REV isolates was determined by IFA using REV-specific monoclonal antibodies, 11B118.22, 11C237.8, and 11D182. Results from sub-typing indicated that all nine isolates from broiler breeders, turkeys, and prairie chickens belonged to subtype 3, and are antigenically related to the chick syncytial virus (CSV) strain of REV, the prototype of subtype 3 REV. In contrast, the three isolates from contaminated vaccines were classified as subtype 2, and were antigenically related to spleen necrosis virus (SNV) strain of REV, the prototype of subtype 2 REV. Three isolates representing REV isolated from broiler breeders, turkeys, and prairie chickens were cloned and further evaluated by DNA sequence analysis of the envelope gene. Results from DNA sequence analysis confirmed those from sub-typing and indicated that the three REV isolates representing those from broiler breeders, turkeys, and prairie chickens are closely related to CSV of REV, with an amino acid homology of 98% or greater as compared with SNV with an amino acid homology of 95% or less. Data from this study clearly indicate that subtype 3 is the most common subtype of REV circulating in three different avian species, namely broiler breeders, turkeys and prairie chickens, located in three different geographical regions in the United States.


Assuntos
Galliformes , Vírus da Reticuloendoteliose Aviária/classificação , Reticuloendoteliose Aviária/virologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Embrião de Galinha , DNA Viral , Fibroblastos/virologia , Regulação Viral da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , Estados Unidos/epidemiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Avian Dis ; 51(3): 725-32, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17992933

RESUMO

The effects of viral strain, viral dose, and age of bird at inoculation on subgroup J avian leukosis virus (ALV J) persistence, neutralizing antibody (VNAb) response, and tumors were studied in commercial meat-type chickens. Chickens were inoculated on the fifth day of embryonation (5 ED) or on day of hatch (DOH) with either 100 or 10,000 50% tissue-culture infective dose (TCID50) of one of three ALV J strains, namely ADOL Hcl, ADOL 6803, or ADOL 4817. At 1, 3, 7, 11, 15, 19, 23, 27, and 32 wk posthatch, chickens were examined for ALV J viremia and VNAb against the inoculated strain of ALV J. A high incidence (83%-100%) of ALV J persistence was observed in all treatment groups. Development of VNAb did not always lead to viremia-free status; even though 18% of the chickens developed VNAb, only 4% were able to clear viremia. The viral strain, dose, and age of bird at inoculation seemed to have an effect on the incidence of VNAb; however, the differences were statistically significant in only some treatment groups. Chickens infected with ADOL 6803 had higher incidence of VNAb than chickens infected with ADOL Hc1 and ADOL 4817 (P < 0.05 in groups 5 ED at 100 TCID50 and DOH at 10,000 TCID50). There was a trend in all groups inoculated with 100 TCID50 to have higher incidence of VNAb than that of groups inoculated with 10,000 TCID50 (ADOL 6803 at 5 ED and ADOL 4817 at DOH [P < 0.05]; ADOL Hc1 at DOH [P < 0.08]). In most treatment groups (ADOL Hc1 at 100 and 10,000 TCID50, ADOL 6803 at 10,000 TCID50, and ADOL 4817 at 100 TCID50), chickens inoculated at DOH had higher incidence of VNAb than that of chickens inoculated at 5 ED (ADOL 6803 at 10,000 TCID50 [P < 0.05], ADOL Hc1 at 100 TCID50 [P < 0.08]). Incidence of ALV J-induced tumors and tumor spectrum were influenced by viral strain, age at inoculation, and VNAb response.


Assuntos
Envelhecimento , Vírus da Leucose Aviária/classificação , Leucose Aviária/virologia , Galinhas , Neoplasias/veterinária , Doenças das Aves Domésticas/virologia , Animais , Anticorpos Antivirais/sangue , Carne , Neoplasias/virologia
9.
Avian Dis ; 50(3): 342-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17039832

RESUMO

Chickens from seven different parental lines of commercial White Leghorn layer flocks from three independent breeders were inoculated with a naturally occurring avian leukosis virus (ALV) containing an ALV-B envelope and an ALV-J long terminal repeat (LTR) termed ALV-B/J. Additional groups of chickens from the same seven parental lines were inoculated with ALV-B. Chickens were tested for ALV viremia and antibody at 0, 4, 8, 16, and 32 wk postinfection. Chickens from all parental lines studied were susceptible to infection with ALV-B with 40%-100% of inoculated chickens positive for ALV at hatch following embryo infection. Similarly, infection of egg layer flocks with the ALV-B/J recombinant virus at 8 days of embryonation induced tolerance to ALV with 86%-100% of the chickens viremic, 40%-75% of the chickens shedding virus, and only 2/125 (2%) of the chickens producing serum-neutralizing antibodies against homologous ALV-B/J recombinant virus at 32 wk postinfection. In contrast, when infected with the ALV-B/J recombinant virus at hatch, 33%-82% of the chickens were viremic, 28%-47% shed virus, and 0%-56% produced serum-neutralizing antibodies against homologous ALV-B/J recombinant virus at 32 wk postinfection. Infection with the ALV-B/J recombinant virus at embryonation and at hatch induced predominately lymphoid leukosis (LL), along with other common ALV neoplasms, including erythroblastosis, osteopetrosis, nephroblastomas, and rhabdosarcomas. No incidence of myeloid leukosis (ML) was observed in any of the commercial White Leghorn egg layer flocks infected with ALV-B/J in the present study. Data suggest that the parental line of commercial layers may influence development of ALV-B/J-induced viremia and antibody, but not tumor type. Differences in type of tumors noted in the present study and those noted in the field case where the ALV-B/J was first isolated may be attributed to differences in the genetics of the commercial layer flock in which ML was first diagnosed and the present commercial layer flocks tested in the present study.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/virologia , Galinhas/virologia , Predisposição Genética para Doença , Sequências Repetidas Terminais/genética , Proteínas do Envelope Viral/genética , Animais , Neoplasias/genética , Neoplasias/veterinária , Neoplasias/virologia , Vírus Reordenados/genética , Viremia , Eliminação de Partículas Virais
10.
Avian Dis ; 49(2): 214-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16094825

RESUMO

White leghorn chickens from seven 15.B congenic lines (genetically similar except for genes linked to the major histocompatibility complex [MHC] B haplotype) and two Line 0.B semicongenic lines were infected at hatch with strain ADOL Hc-1 of subgroup J avian leukosis virus (ALV-J). At 5, 8, 16, and 36 wk of age, chickens were tested for viremia, serum-neutralizing antibody, and cloacal shedding. Chickens were also monitored for development of neoplasia. In the 15.B congenic lines (B*2, B*5, B*12, B*13, B*15, B*19, and B*21) there were no significant differences in the incidence of viremia between B haplotypes. In fact, infection at hatch in all of the 15.B congenic lines induced tolerance to ALV-J because 100% of these chickens were viremic and transient circulating serum-neutralizing antibody was detected in only a few chickens throughout the 36 wk experiment. However, at 16 wk of age more B*15 chickens had antibody and fewer B*15 chickens shed virus than did the 16-wk-old B*2, B*5, or B*13 chickens. Moreover, compared with B*15 chickens, a higher percentage of B*13 chickens consistently shed virus from 8 wk postinfection to termination at 36 wk postinfection. The B haplotype had a transient effect on viral clearance in Line 0.B semicongenics, as more B*13 than B*21 chickens remained viremic through 5 wk of age. Very few (0%-18%) of the Line 0.B semicongenic chickens shed virus. By 36 wk of age, all Line 0 B*13 and B*21 chickens produced serum-neutralizing antibodies and cleared the virus. These results show that following ALV-J infection at hatch the immune response is influenced transiently by the B haplotype and strongly by the line of chicken. Although this study was not designed to study the effect of endogenous virus on ALV-J infection, the data suggest that endogenous virus expression reduced immunity to ALV-J in Line 15I5, compared with Line 0, a line known to lack endogenous virus genes.


Assuntos
Vírus da Leucose Aviária/isolamento & purificação , Leucose Aviária/genética , Galinhas/genética , Doenças das Aves Domésticas/virologia , Animais , Leucose Aviária/imunologia , Tipagem e Reações Cruzadas Sanguíneas/veterinária , Haplótipos/genética , Testes de Hemaglutinação/veterinária , Complexo Principal de Histocompatibilidade/genética , Testes de Neutralização/veterinária , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Viremia/veterinária , Eliminação de Partículas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...